Hybrid-Learning Methods for Stock Index Modeling

نویسنده

  • Yuehui Chen
چکیده

The use of intelligent systems for stock market prediction has been widely established. In this paper, we investigate how the seemingly chaotic behavior of stock markets could be well represented using several connectionist paradigms and soft computing techniques. To demonstrate the different techniques, we consider the Nasdaq-100 index of Nasdaq Stock Market and the S&P CNX NIFTY stock index. We analyze 7year Nasdaq 100 main-index values and 4-year NIFTY index values. This chapter investigates the development of novel, reliable, and efficient techniques to model the seemingly chaotic behavior of stock markets. We consider the flexible neural tree algorithm, a wavelet neural network, local linear wavelet neural network, and finally a feed-forward artificial neural network. The particle-swarm-optimization algorithm optimizes the parameters of the different techniques. This paper briefly explains how the different learning paradigms could be formulated using various methods and then investigates whether they can provide the required level of performance — in other IDE GROUP PUBLISHING This paper appears in the publication, Artificial Neural Networks in Finance and Manufacturing edited by Joarder Kamruzzaman, Rezaul Begg, and Ruhul Sarker© 2006, Idea Group Inc. 701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com ITB13009 Hybrid-Learning Methods for Stock Index Modeling 65 Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited. words, whether they are sufficiently good and robust so as to provide a reliable forecast model for stock market indices. Experiment results reveal that all the models considered could represent the stock indices behavior very accurately.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

An Improved Hybrid Model with Automated Lag Selection to Forecast Stock Market

Objective: In general, financial time series such as stock indexes have nonlinear, mutable and noisy behavior. Structural and statistical models and machine learning-based models are often unable to accurately predict series with such a behavior. Accordingly, the aim of the present study is to present a new hybrid model using the advantages of the GMDH method and Non-dominated Sorting Genetic A...

متن کامل

Ranking stocks of listed companies on Tehran stock exchange using a hybrid model of decision tree and logistic regression

Much research has introduced linear or nonlinear models using statistical models and machine learning tools in artificial intelligence to estimate Iran's rate of return. The primary purpose of these methods is simultaneously use different independent variables to improve stock return rates' modeling. However, in predicting the rate of return, in addition to the modeling method, the degree of co...

متن کامل

Forecasting Stock Exchange Market Using Hybrid Neuro Fuzzy Model

This paper proposes a hybrid approach based on neuro fuzzy model and emotional learning for prediction of stock exchange market. Neuro fuzzy models are powerful in modeling and forecasting highly nonlinear and complex time series. The emotional Learning, which is successfully used in bounded rational decision making, is introduced as an appropriate method to achieve particular goals in the pred...

متن کامل

Evaluating machine learning methods and satellite images to estimate combined climatic indices

The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006